11 research outputs found

    D6.2 Workplan for transfer of knowledge and experience

    Get PDF
    This document represents the ‘Workplan for transfer of knowledge and experience’ (deliverable D.6.2) for the EXCELSIOR project. It focuses on the scope and activities of WP6 ”Knowledge Transfer and Capacity Building”. The main objective of WP6 is to coordinate and manage the knowledge transfer and capacity building that will take place during the EXCELSIOR project with Strategic Partners. The document will provide a workplan of how knowledge transfer and capacity building will take place between the Strategic Partners via workshops, seminars and secondments. This plan relies heavily on the extensive work done at the preparation of the project in defining the seminars, workshops and secondments that will take place between the Strategic Partners. This deliverable focuses on the initial workplan developed for Capacity Building Scheme A, which runs from M26 to M44. The deliverable includes the capacity building and knowledge transfer activities that will be conducted by the Strategic Partners DLR, NOA and TROPOS. The course description and program for selected trainings can be found in the appendices. The present document constitutes the ‘Workplan for transfer of knowledge and experience’ for Capacity Building Scheme period ‘A’ in the framework of the EXCELSIOR project, dedicated to Task T6.1 ‘Personnel Mobility Scheme’ under work package WP6 ‘Knowledge Transfer and Capacity Building’. D6.2 focuses on the trainings that will take place during the Capacity Building Scheme A of the project. This document provides a guideline of the knowledge transfer activities, but it is not limited to the activities that will take place during Capacity Building Scheme A. The Strategic Partners suggested that a flexible workplan is needed in order to identify the gaps and needs of the researchers of the ECoE, especially during the first Capacity Building Scheme and adjust the workplan as needed in order to facilitate more effective knowledge transfer and capacity building. The secondments will be selected by the Strategic Partners as needed, during the knowledge transfer activities, parallel to the demonstration projects in WP7. Selected descriptions of knowledge transfer activities are featured in Appendix A and Appendix B

    D10.1 Report on the dissemination activities and Conference organisation

    Get PDF
    This deliverable provides an extensive analysis of the dissemination activities and workshops organisation of the EXCELSIOR H2020 Teaming Project. The analysis starts with the report on our participation in conferences (11) and how the project was promoted through it. Then, we explain about the participation of our team members in talks (17), workshops (7) and seminars (12) as invited speakers. The deliverable continues with a thorough presentation of the lectures by invited speakers (8), the webinar (1) and the workshops (2) organized by our team. Additionally, we document about our participation in other events (i.e., European Researcher’s Night 2021 and SpaceUPCyprus 2021 Live). The last chapter provides the publications, journal papers, conference papers, and book sections for the reporting time period. The deliverable concludes by providing information on the outcome of the reported activities and how they have contributed to the progress of the EXCELSIOR H2020 Teaming Project. It is concluded that there is a strong need to establish links in the EMMENA region and connect with them. This has not been achieved yet, but a strategy was prepared to raise awareness about the EXCELSIOR Project in the EMMENA region and establish partnerships, starting with targeted stakeholders’ workshop in autumn 2021, where selected stakeholders from the region will be invited to be informed them about the project and provide them the space to discuss their needs and identify common scientific interests and ways of collaboration

    The Establishment of the EXcellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR) for the Eastern Mediterranean Region

    Get PDF
    The aim of this paper is to present our vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services on the National, European and International levels. The implementation of the vision will be addressed through a robust Business Plan that will be developed with in Phase 1 of EXCELSIOR project and will establish the foundations for the development of a competitive and high competence profile to expand the Centre’s visibility beyond the national level and develop transnational regional cooperation. The Business Plan is key to ensure the sustainability of the CoE and will also provide the necessary guarantees for a self-sustained operation. The long term aim of the upgraded Centre is to create new opportunities for conducting basic and applied research and innovation (R&I) in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment

    D1.15 Impact Assessment Report for RP 2

    Get PDF
    This deliverable provides the impact assessment report for RP2 (M16-M30). It provides an update on the overall and specific objectives of the EXCELSIOR project that have been achieved within RP2. This task undertakes the establishment of a methodology for the yearly monitoring of the impact of the different activities carried out by Eratosthenes Centre of Excellence (ECoE) and its partners through EXCELSIOR against a set of quantified targets. The list of Key Performance Indicators established in D1.12 has been revised based on the comments received by the EXCELSIOR project reviewers on 23 June 2021 following the first project review. This list is hereby updated to reflect the activities of RP2. By monitoring the impact for the RP2, it will provide direction of the activities needed to fulfil the KPIs for the following reporting periods. The impact assessment report will be used to assess the implementation of the work plan and adjust the activities in agreement with WP and task Leaders to ensure the achievement of the Project’s strategic objectives. WP1 provides the KPI monitoring framework and general quality processes, while the WP3 defines concrete actions affecting all other WPs for meeting the Impact KPIs. This task’s activities will be coordinated with WP3 activities on strategy definition as a continuous process, in order to update the human resources, infrastructure acquisition and overall work plan and to meet new priorities identified. The analysis outputs will update the Project Action Plan of Task 1.1. The following activities were examined and assessed according to the KPIs. These activities include proposals, dissemination events, publications, academia, networks, etc. The impact for each activity was also included

    Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps

    Get PDF
    Earth observation (EO) techniques have significantly evolved over time, covering a wide range of applications in different domains. The scope of this study is to review the research conducted on EO in the Eastern Mediterranean, Middle East, and North Africa (EMMENA) region and to identify the main knowledge gaps. We searched through the Web of Science database for papers published between 2018 and 2022 for EO studies in the EMMENA. We categorized the papers in the following thematic areas: atmosphere, water, agriculture, land, disaster risk reduction (DRR), cultural heritage, energy, marine safety and security (MSS), and big Earth data (BED); 6647 papers were found with the highest number of publications in the thematic areas of BED (27%) and land (22%). Most of the EMMENA countries are surrounded by sea, yet there was a very small number of studies on MSS (0.9% of total number of papers). This study detected a gap in fundamental research in the BED thematic area. Other future needs identified by this study are the limited availability of very high-resolution and near-real-time remote sensing data, the lack of harmonized methodologies and the need for further development of models, algorithms, early warning systems, and services

    Modelling microfluidic flow and heat transfer in circular and elliptical channels in microstructure fibres

    No full text
    Microfluidics are important micro-scale devices that can be used to manipulate very small volumes of fluids on the order of nano- to femto-litres. The control and sorting of nano-particles is a primary goal using this technology. There is particular interest in the use of microstructure optical fibres for the transfer of fluids, whereby the guided light interacts with a fluid in the region of the air-hole structure. We study the fluid transport capabilities of microstructure fibres with cross sections containing circular or elliptical holes, considering the effects of flow rates, fluid viscosity, and the channel diameter. The role of heat flux is considered in relation to the fluid characteristics. We solve the time-dependent Navier- Stokes equations and the convection-diffusion equatio

    Pressure-driven and other flows in microstructure optical fibres for microfluidics

    Get PDF
    Microfluidics are important micro-scale devices that can be used to manipulate very small volumes of fluids on the order of nano- to femto-liters. The control and sorting of nano-particles is a primary goal using this technology. There is particular interest in the use of microstructure optical fibers for the transfer of fluids, whereby the guided light interacts with a fluid in the region of the air-hole structure. We study the fluid transport capabilities of microstructure fibers with cross sections containing circular or elliptical holes, considering the effects of flow rates, fluid viscosity, and the channel diameter. The role of heat flux is considered in relation to the fluid characteristics. We solve the time-dependent Navier-Stokes equations and the convection-diffusion equation. This work is of importance as one cannot assume that the flow dynamics in microstructure fibres will be the same as conventional micro-fluidic channels. Through the study of the heat transfer, for pressure-driven and other flows and for low Reynolds numbers, we confirm anticipated behaviour of the fluids in the micro-channel structure

    Use Of Remote Sensing For Assessing Water Quality In Open-Surface Water Systems In Cyprus

    No full text
    The total agricultural area of Cyprus is about 15% of the total land area ( > 75% as arable farming), setting as a national concern the contamination of groundwater and surface water by the applied agricultural chemicals, which are indispensable in modern agriculture. Agricultural runoff is one of the major sources of nonpoint source pollution. Moreover, a share of the nitrate-N and P enriched water percolates and recharges subjacent aquifers by following natural flow pathways and, finally, discharges in open-surface water systems. Consequently, increased nitrate and phosphorus concentrations are observed in water bodies, which are believed to originate from agricultural lands due to the significant losses of N and P from cropping systems. In Cyprus, a substantial challenge for water resource management is reducing the pollutant load to reservoirs from agricultural areas. Therefore, water quality monitoring could benefit significantly from information derived from Earth observation (EO) satellites

    ‘EXCELSIOR’ H2020 Widespread Teaming Phase 2 Project: Earth Observation and Geoinformatics Research and Innovation Agenda for Cultural Heritage

    No full text
    This paper presents how the EXSELSIOR H2020 Teaming project will support the management and monitoring of the cultural heritage domain through its research and innovation agenda within the Eastern Mediterranean, Middle East, and North Africa (region known as EMMENA). The pressing need for protecting the cultural heritage assets is highlighted throughout the document by reviewing the conducted research work in key funded projects attained in the past by the Cyprus University of Technology team in collaboration with EXCELSIOR’s partners
    corecore